Analysis and Correction of Dynamic Geometric Misalignment for Nano-Scale Computed Tomography at BSRF
نویسندگان
چکیده
Due to its high spatial resolution, synchrotron radiation x-ray nano-scale computed tomography (nano-CT) is sensitive to misalignments in scanning geometry, which occurs quite frequently because of mechanical errors in manufacturing and assembly or from thermal expansion during the time-consuming scanning. Misalignments degrade the imaging results by imposing artifacts on the nano-CT slices. In this paper, the geometric misalignment of the synchrotron radiation nano-CT has been analyzed by partial derivatives on the CT reconstruction algorithm and a correction method, based on cross correlation and least-square sinusoidal fitting, has been reported. This work comprises a numerical study of the method and its experimental verification using a dataset measured with the full-field transmission x-ray microscope nano-CT at the beamline 4W1A of the Beijing Synchrotron Radiation Facility. The numerical and experimental results have demonstrated the validity of the proposed approach. It can be applied for dynamic geometric misalignment and needs neither phantom nor additional correction scanning. We expect that this method will simplify the experimental operation of synchrotron radiation nano-CT.
منابع مشابه
Artifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملThe influence of misregistration between CT and SPECT images on the accuracy of CT-based attenuation correction of cardiac SPECT/CT imaging: Phantom and clinical studies
Introduction: Integration of single photon emission computed tomography (SPECT) and computed tomography (CT) scanners into SPECT/CT hybrid systems permit detection of coronary artery disease in myocardial perfusion imaging (MPI). Misregistration between CT and emission data can produce some errors in uptake value of SPECT images. The aim of this study was evaluate the influence...
متن کاملValidation of computed tomography-based attenuation correction of deviation between theoretical and actual values for four computed tomography scanners
Objective: In this study, we aimed to validate the accuracy of computed tomography-based attenuation correction (CTAC) using the bilinear scaling method.Methods: The measured attenuation coefficient (μm) was compared to a theoretical attenuation coefficient (μt ) using four different CT scanners and an RMI 467 phantom. The effective energy of the CT beam X-rays was calculated, using the aluminu...
متن کاملCorrection to: An Ex vivo Analysis of Apical Transportation in Root Canals Prepared with BT Race Rotary and Hand K-Flexofile by Cone Beam Computed Tomography
Correction to: An Ex vivo Analysis of Apical Transportation in Root Canals Prepared with BT Race Rotary and Hand K-Flexofile by Cone Beam Computed Tomography Abbas Mesgarani1, Azadeh Zakariaie2, Azam Haddadi Kohsar1, Sina Haghanifar3, Jamshid Yazdani Charati4, Arman Ebrahimi5 1 Assistant Professor, Department of Endodontics, Faculty of Dentistry, Mazandaran University of Medical S...
متن کاملComputed tomography based attenuation correction in PET/CT: Principles, instrumentation, protocols, artifacts and future trends
The advent of dual-modality PET/CT imaging has revolutionized the practice of clinical oncology, cardiology and neurology by improving lesions localization and the possibility of accurate quantitative analysis. In addition, the use of CT images for CT-based attenuation correction (CTAC) allows to decrease the overall scanning time and to create a noise-free attenuat...
متن کامل